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THERMAL STRESSES AND DEFORMATIONS IN A PLATE SUBJECT TO 

THEACTION OF CONCENTRATED ENERGY FLOWS 

G. I. Rudin UDC 535.211:539.371 

A two-dimensional problem is solved concerned with the determination of temperature 
and stress fields in a plate subject to heating by a radiative flow of Gaussian 
type. 

Nonhomogeneous radiative heating of a plate induces thermal stresses and deformations 
in the plate. If the intensity of the radiative flow is sufficiently high, the stresses may 
exceed the limit of strength of the plate material, giving rise to irreversible structural 
changes in the plate. In particular, the role of the thermal deformations manifests itself 
in a twisting of the plate surface. If the plate is an element of an optical system, this ef- 
fect leads to a distortion in the structure of the beam being transmitted, for example, to 
a lack of focus. There is also increased interest in the study of stresses and deformations 
under the action of concentrated flows of radiation with a Gaussian distribution of intensity 
along a radius when the radius of the zone of exposure is equal in order of magnitude or sig- 
nificantly less than the plate thickness. In this case the spatial distribution of stresses 
and deformations is two-dimensional and differs essentially from the one-dimensional approx- 
imation. 

In [I] a two-dimensional problem was treated concerned with the determination of the 
stresses in a free plate under the action of a thermal surface source. At the same time, 
there is considerable practical interest in the study of stress and deformation fields when 
the thermal source is a volume source. Such sources are formed, in particular, under the ac- 
tion of a laser beam on a nonmetallic material, and the action of an electron-beam flow on 
metal. In these cases, a thermal source is formed in the plate whose strength depends expon- 
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entially on the longitudinal coordinate (a Burger-type source, [2]). Besides this, we con- 
sider in the present paper cases in which one of the plate surfaces is free or is clamped on- 
to a rigid base. 

We find the temperature field in a flat plate of thickness d, unbounded in a radial direc- 
tion, subjected to radiation on it. We assume that the strength of the thermal source, formed 
as the result of absorption of radiation, can be represented in the form (the flow of radia- 
tion is directed on the side of positive z values and is perpendicular to the plane of the 
plate) 

W = &A exp (--~z - -  ar 2) [ (t). (1)  

In the case of absorption of energy from a laser beam, A = ~, the coefficient of absorption, 
and Io is the intensity of the radiation. Under the action of a flow of electrons, the parame- 
ters A and ~ can be determined from the solution of a problem concerning passage of electrons 
through the material of the plate [2]. The function f(t) gives the time dependence of the 
strength of the thermal source. We assume both plate surfaces to be thermally insulated. We 
determine the temperature field from the solution of the heat conduction equation with appro- 
priate boundary and initial conditions: 

OT k ( O2T 1. OT ~_ c3ZT 
_ _ .  _-:=__ 

Ot \ Or z + - - -  r Or Oz 2 

OT OT I 

J Oz ~=o Oz ~=a 

Io A 
+ - -  exp (--jxz--ar z) f (t), 

c9 

= 0, T [~=~ - -  0. 

(2) 

Applying Hankel and Fourier transformations to the heat conduction equation [3], we obtain 

n2a2 i loA~1 z 1 - -  exp (-- /~d)(--  1) = x exp - -  f (t), 
d--/- = ~ ] 2c9a (ha) z § (pAp 4a ] 

d oo 

-T (p, n, t) = rJo (pr) T (r, z, t) dr c o s  
h b d 

dz, 

( 3 )  

where n = 0, i, 2, 3, .... We write the solution of Eq. (3), with the initial condition (2) 
taken into account, in the form 

t 

77-- l~ exp - - ~ a  (nzt)z+(~td) 2 • exp - - k  pz ~ d  2 t .~ / (0)  exp k p Z +  d z / 

Carrying out the inverse Fourier and H~ankel transformations, we obtain the following relation 
for the temperature: 

oo oa 

T (r, z, t) I~ exp - -  PJo (pr) Fo (t) + • cos dp, 
2 ~ , o ~  .- ~ = d ( 5 )  

where 
t 

Fo (t) --- [1 - -  exp (--I ,d)]  exp (--kpZt) f f (0) exp (kpZO) dO, 
0 * 

•  exp k p~ + - - ~  0 dO, n =  l, 2, 3 . . . .  

I X 

We obtain relations for the displacement components u and w, respectively, 
and axial directions [4]: 

u 1 ~ 0a 1 2 ( 1 + v )  OT 
Au . . . .  + - -  or , 

r z 1 - - 2 v  Or 1--2,~ Or 

in the radial 

(6) 
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where Ou u Ow ~ = - - + - - + -  
Or r Oz 

u (r, z, t) .... 

w (r, z, t ) =  

Oe 2 ( 1 - 1 - ~ )  ~ O T  
h w  

1 - - 2 v  Oz 1 - - 2 v  Oz 

is the volumetric expansion. We represent u and w in the form 

4A _ exp Jx (pr){% (z, p) Fo (t) .q- qb~ (z, p) F~ (t~} dp, 
2cpadl~ b 4a ~ = l  " 

IoA 1 

2cpad~ o , 4a ] ~=1 J 

(7) 

Substituting relations (5), (8), and (9) 
for the unknown functions ~ and # : 

into relations 

(8 )  

(9 )  

(6) and ( 7 ) ,  we o b t a i n  e q u a t i o n s  

n n 

dZw..,~ p dq~,~ 2(1 --v) pZ%( = 2(I -}-v) c~pZco s n~____Lz , 
dz z 1 - -  2v dz 1 - -  2v 1 - -  2v d 

2 (1 - -  v) dZ_.._r162 p dq~,~ 2 (1 q- v) czp nzt sin nztz 
1 - -  2 v  dz ~ "~ l - - 2 v  dz - -  t)~"q~,~ : - -  - - ,  n = O ,  1, 2 . . . . .  1 - -  2v d d 

(10) 

(11) 

We now differentiate Eqs. (I0) with respect to the variable z and add the result to Eq. (ii): 

=0 
dz~ \ d---7-- \-Tf-z + pqb ], 

We obtain the solution of this equation 

dcpn 
d---~ -I- Pq)~ = A,~ exp ( - - p z )  -~ B,~ exp (pz), ( ! 2 )  

Where A and B are arbitrary constants to be determined from the boundary conditions. Carry- 
n 

ing  o u t  e l e m e n t a r y  t r a n s f o r m a t i o n s  on t h e  l e f t  s i d e  o f  Eq. (10) 

dqbn (1 - -  2~)( dZcPa ddPn ~ - - 2 ( 1 - - ~ ) p  _ _ 2 ( l _ _ v ) p Z c p n = _ _ 2 ( l _ g v ) c z p Z c o  s n~z  
\ - -~z 2 " p dz ] dz ' d 

we obtain, taking into account the solution (12), the general solution of the nonhomogeneous 
system of equations (i0) and (ii): 

_ _  nr~z ~ 1 - - 2 v  [B~exp(pz)-- dcPn @PCPn =czP 1-~-v c o s - -  - -  
dz I - -  v d 2 (1 --v) (13) 

d% + p~b. = A. exp ( - - p z )  + B,~ exp (pz). - -  A. exp (--pz)], - ~ z  

Adding and subtracting equations of the system (13), we obtain two ordinary differential equa- 
tions of the first order for the functions 
form 

n~Z 
n~ sin -- 

q9 n = o~pd I + v d 
1 - v (nz)~ + (pa)~ 

(qbn+~) and (~n--~n) , whose solution has the 

A,, [ 
+ 4 (1 - -  v - - - - - ~  z - k - -  

3 - -  4v ] exp (--  pz) - -  
2p J 

B,~ [ 3 - - 4 v ]  C,~ D,~ 
z ~ exp (pz) 4-  exp (--  pz ) - - k  exp (pz), 

4 ( l - -v )  2p ' 2 2 
tz~z 

COS - -  

q)n.~_czp2dal'@'v d An[ 3 - -  4v.]  exp ( _  pz) _b 
1 - -  v (nn) 2 -1- (pd) z ~- 4 (1--v----------( z 2p 

B. [ 3 -- 4______~ ] ~ D,~ exp (pz). 
-+ 4 ( l --v)  z q- 2p exp (pz) -{- - exp (--  pz) - -  

(14) 
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We obtain the arbitrary constants An, Bn, Cn, D n from the boundary conditions for the stres- 
ses and displacements. We consider the folIowing cases. 

i. Surface z = 0 is free, surface z = d is clamped onto a rigid base. The stress ten- 

sor components for z = 0 are 

= 2 G  O u +  Ow = 0 ,  e z : = 2 G [  ff • + - - + r  ~--l--2v = Orz 

for z = d the displacements u = w = 0. 

2. Surfaces z = 0 and z = d are free, and on them Orz = ~ = O. 

Boundary conditions in the first case, with account being taken of relations (8) and 
have the form 

(9), 

dq~,~ p@n -- 0, dO. v l + V ~ T = 0 ,  z = 0 ,  
d~ --G--z + i •  P~" - i--~ (15) 

qo,~ = @,~ = 0, z = d; 

in the second case 

drg" pq5 0, dq),~ 4-. v t q- 
_ _ _  = , Pg' ,~  v r  = O ,  z = O ,  d .  (16)  

dz dz 1--  v I - -  ~, 

Substituting relations (5) and (14) into the boundary conditions, we obtain a system of alge- 

braic equations for An, Bn, Cn, D n in the case of boundary conditions (15): 

1 ( A . + B , , ) - - p ( C , , - + - D . ) = O ,  1 ( B , ~ . - - A , , ) + p ( D , ~ - - C . ) =  2 1 q-____v a p x  z 
4 ( l - - v )  4 ( l - - v )  1 - - v  (tin) z + x 2 ' 

I ~ + x  exp (-- x) + B,, 3 2 

• p (C,~ exp (--  x) + D~ exp x) = 0, 

A,~[x 3 - - 4 ' V ] e x p ( - - x ) + B , ~ [ 3 - - 4 " 2  ~ + x ] _  

(--  1)~x "- 
• p (C,, exp (--  x) --- D,  exp x) = - -  4 (1 -}- v) ~p 

(na)~ + x 2 

x ] e x p x +  2 ( 1 - - ~ )  X 

exp x + 2 (1 -- v) 

(17) 

where x = pd. In the case of conditions (16) the first and second equations of system (17) 
stay the same, but in the third and fourth equations it is necessary to replace 3--49/2 in 
the square brackets by --1/2. 

Substituting the coefficents A , B_, Cn, D into relation (14), we obtain equations for 
~n and q n. The components of the ~isp~acementnu and w, depend, in accordance with relations 
(8) and (9)~ on 9_ and ~ , while the stress tensor components, in accordance with the known 

n 
HookeWs Law relatlonships, may be expressed in terms of u and w and their first derivatives. 
We give the expressions for the stresses ~ and Orz for z = d for the case involving clamp- 
ing of the plate on a rigid base: 

Gz (r, d, l) --  IoAG .f exp J1 x • ~]  F~ (t) [A~ exp (-- x) + B~ exp xl dx, 
2cpad2~ o 4ad2" " ,,=o 

~ ( r ,  d, t)= IoAG [ exD Jo x •  
�9 2cpad"-~t g " 4ad2 . ~, F ,  (t) [ - -  A ,  exp (--  x) + B,~ exp x]dx. 

\ n ~ O  

(18) 

Relations analogous to relation (18) can also be obtained for the stress tensor components. 

Figure 1 shows the dependence of the stress o z_ at the point r = 0, z = d on the parame- 
ter a for a copper plate of thickness d = 2.10 -3 m ~c = 392.9 J/kg.deg), p 8.93.103 kg/m 3, 

= 5"103 m -~, G = 4.10 ~ MPa, e = 1.67.10 -5 deg -x) at impulse termination. We assume that the 
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Fig. 2. Dependence of stress o (curves I and 2 are for ~ = Ozz; curves 3 and 4 are 
for ~ = Orz ) on distance r/d for various values of a. For curves i and 3, a = 4 
cm-2; for curves 2 and 4, a = 3 cm -=. Stress ~ is in units of M~ao 
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Fig. 3. Dependence of stress o (curves I and 2) and temperature T (curve 3) on a. 
ZZ 

Values of d for curves 1 and 2 are 0.25 cm and 0.5 cm, respectively. T in ~ 

Fig. 4. Dependence of optical intensity F -~ on a for various ~alues of d: Curves 
I, 2, and 3 are for d values 0.i, 0.25, and 0.5 cm. Units of F-* are in cmT*, 

radiative impulse is of rectangular form and of duration T = 10 -2 sec. Then for the energy E 
absorbed by the plate material we have the relation 

a loA~ E = 2~loA~ .i exp ( - -  ar 2) rdr ; exp ( - -  ~z) dz := n ( 1 9 )  
o o a~ 

It follows from the figure that for more concentrated radiative flows, i.e., with an increase 
in a, the normal stress ~zz increases almost linearly. Since ~zz > 0, it is a tensile stress, 
so that when a certain limiting value of o is reached, depending on the strength of the con- Z 
tact between the plate and the base, the p~ate may come loose from the base. Figure 2 shows 
the dependence of the stresses ~zz and ~rz, acting in the plane z ffi d, on the radial coordin- 
ate r. It was found that ro = a ~*~/2, where ro is a characteristic transverse measure of the 
region in which azz differs from zero. The effect of the compressive stresses arg in the s 
plane z = d becomes apparent at a much greater distance from the r = 0 axis than In the ca e 
of the stresses ~z" 

In the case of a free plate the expression for the stress Ozz , acting in the mean plane, 
i.eo, for z ffi d/2, has the form 
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d EG exp J0 x Fn ( t )X  
(~zz r, -~-, t = 8z~(1--v) cpd2"~ o 4adz 

x{A~[exp~--(l+x) exp(--~)]+B~[expC~)(1--x)-- (20) 

We consider the case in which optical radiation (A ~ ~) passes through a weakly absorbing 
glass plate (~d << i). It is then convenient to refer the values of ~zz to the value ~E. Fig- 
re 3 shows the values of ~ at the point r = 0, z = d/2 at the instant t = T = 1 sec of im- 
pulse termination for various a values (cp = 1.69.106 J/m 3 deg), G = 3.10 ~ MPa, 9 = 0.30, 

= 8.5-10-" deg-*). Calculations made in accordance with relation (20) show that for a ~ I0 
cm -2 the values of ~ differ very little from zero for thin plates (d ~ 0.2 cm). With an in- 
crease in d the stress Ozz increases very sharply for a ~ i0 cm -2. It is well known (see 
[4]) that for calculations of stresses in a plate very broad use is made of a plane stress 
state approximation in which o E 0 Relation (20) allows us to estimate the limits of ap- 

~z In partiuclar, it was found that its accuracy increases plicability of this approximatlon. 
as the parameter a and the plate thickness d decrease. In Fig. 3 we show how the temperature 
T(r = O) depends on a. 

As the result of nonhomogeneous heating in the plate a thermal lens is formed due to a 
change in refractive index (volume lens) and to a distortion of the surfaces (surface lens)o 
We limit ourselves here to a determination of the optical density of the surface lens, using 
expressions (9) and (14) for the displacement of the surface z = 0 of the plate: 

w(r, 0, t ) :  E ~exp - - - -  Jo x F o(t) A ~ 1 7 6  dx. (21) 
4ncpd~ , 4ad 2 x 

Since the plate is weakly absorbent, the displacement of the surface z = d is equal in magni- 
tude and opposite in sign to the displacement w (r, 0, t). In calculating the optical intens- 
ity F -~ of the surface lens for the paraxial rays in integral (21) we express the Bessel func- 
tion in a series up to the square term. As a result, we obtain 

F_ ~ E (n o - -  1) exp x f o  (l) (Ao ~ Bo) dx. (22) 
2~cpd3T o 4ad~ ' 

F i g u r e  4 shows t h e  dependence  o f  t h e  o p t i c a l  i n t e n s i t y  F -~ o f  a g l a s s  p l a t e  on p a r a m e t e r  a .  
It was found that F-* increases as the parameter a and the thickness d increase, 

NOTATION 

T, temperature; k, thermal diffusivity; c, specific heat capacity; p, density of plate 
material; r, radial coordinate; z, axial coordinate; t, time; ~, temperature coefficient of 
linear expansion; G, shear modulus; 9, Poisson coefficient; Jn(X), Bessel function of ist 
kind; ~E, linear density of absorbed energy, J/cm; no, index of refraction. 

i. 

2. 

3. 
4. 
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